On Optimality Conditions for Abstract Convex Vector Optimization Problems

نویسندگان

  • Gue Myung Lee
  • Kwang Baik Lee
  • MYUNG LEE
  • KWANG BAIK LEE
چکیده

A sequential optimality condition characterizing the efficient solution without any constraint qualification for an abstract convex vector optimization problem is given in sequential forms using subdifferentials and 2-subdifferentials. Another sequential condition involving only the subdifferentials, but at nearby points to the efficient solution for constraints, is also derived. Moreover, we present a proposition with a sufficient condition for an efficient solution to be properly efficient, which are a generalization of the well-known Isermann result for a linear vector optimization problem. An example is given to illustrate the significance of our main results. Also, we give an example showing that the proper efficiency may not imply certain closeness assumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Sequential Optimality Conditions and Variational Inequalities

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

Optimality conditions for approximate solutions of vector optimization problems with variable ordering structures

‎We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces‎. ‎Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems‎. ‎Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007